Machine learning con pytorch y scikit-learn : desarrollo de modelos de machine learning y deep learning con python /

Raschka, Sebastian.

Machine learning con pytorch y scikit-learn : desarrollo de modelos de machine learning y deep learning con python / Sebastian Raschka, Yuxi (Hayden) Liu y Vahid Mirjalili ; prólogo, Dmytro Dzhulgakov. - Primera edición. - xxvii, 771 páginas : gráficas, ilustraciones ; 24 cm - Python Machine Learning Visión de Expertos .

1. Dotar a los ordenadores de la capacidad de aprender de los datos. -- 2. Entrenamiento de algoritmos sencillos de aprendizaje automático para tareas de clasificación. -- 3. Un recorrido por los clasificadores de aprendizaje automático con Scikit-learn. -- 4. Elaboración de conjuntos de datos de entrenamiento adecuados: preprocesamiento. -- 5. Comprensión de datos mediante la reducción de la dimensionalidad. -- 6. Aprendizaje de las mejores prácticas para la evaluación de modelos y el ajuste de hiperparámetros. -- 7. Combinación de diferentes modelos para el aprendizaje de conjunto. -- 8. Aplicación del aprendizaje automático al análisis de opiniones. -- 9. Pronóstico de variables objetivo continuas con análisis de regresión. -- 10. El trabajo con datos no etiquetados: análisis de clustering. -- 11. Implementación de una red neuronal artificial multicapa desde cero. -- 12. Paralelización de redes neuronales con PyTorch. -- 13. Profundización: La mecánica de PyTorch. -- 14. Clasificación de imágenes con redes neuronales convolucionales profundas. -- 15. Modelado de datos secuenciales mediante redes neuronales recurrentes. -- 16. Transformadores: mejora del procesamiento del lenguaje natural con mecanismos de atención. -- 17. Redes generativas antagónicas con las que sintetizar nuevos datos. -- 18. Redes neuronales de grafos para captar las dependencias en datos estructurados en grafos. -- 19. Aprendizaje reforzado para la toma de decisiones.

En los últimos años, los métodos de Machine Learning (en castellano, aprendizaje automático), con su capacidad para dar sentido a grandes cantidades de datos y automatizar decisiones, han encontrado amplias aplicaciones en la sanidad, la robótica, la biología, la física, los productos de consumo, los servicios de Internet y otros sectores.
Los saltos de gigante en la ciencia suelen provenir de una combinación de ideas poderosas y grandes herramientas. El aprendizaje automático no es una excepción. El éxito de los métodos de aprendizaje basados en datos se debe a las ingeniosas ideas de miles de investigadores con talento a lo largo de los 60 años de historia en este campo. Pero su reciente popularidad también se debe a la evolución de las soluciones de hardware y software que los hacen escalables y accesibles. El ecosistema de excelentes librerías para la computación numérica, el análisis de datos y el aprendizaje automático creadas en torno a Python, como NumPy y Scikit-learn, ha conseguido una amplia acogida en la investigación y la industria. Esto ha contribuido en gran medida a que Python sea el lenguaje de programación más popular.

9789587788891


Python--Lenguaje de programación de computadores
Automatización de datos.
Lenguaje de programación

006.31 / R223m 2023
footer